Search results for "Electrical Properties"
showing 10 items of 24 documents
Investigation of AC Electrical Properties of MXene-PCL Nanocomposites for Application in Small and Medium Power Generation
2021
The paper examined Ti3C2Tx MXene (T—OH, Cl or F), which is prepared by etching a layered ternary carbide Ti3AlC2 (312 MAX-phase) precursor and deposited on a polycaprolactone (PCL) electrospun membrane (MXene-PCL nanocomposite). X-ray Diffraction analysis (XRD) and Scanning Electron Microscopy (SEM) indicates that the obtained material is pure Ti3C2 MXene. SEM of the PCL-MXene composite demonstrate random Ti3C2 distribution over the nanoporous membrane. Results of capacitance, inductance, and phase shift angle studies of the MXene-PCL nanocomposite are presented. It was found that the frequency dependence of the capacitance exhibited a clear sharp minima in the frequency range of 50 Hz to o…
Dielectric response of BaTiO electronic states under AC fields via microsecond time-resolved X-ray absorption spectroscopy
2021
This research was performed under the approval of the Photon Factory Program Advisory Committee (PF-PAC; Contract Numbers 2015G580, 2017G587, and 2019G614) and was financially supported by JSPS KAKENHI Grant Numbers 18H01153 , 19H02426 , and 18K19126 . The experiment for measuring spectra in Fig. 6 (b) was performed on beamline BM26A (proposal MA 2731) at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to Local Contact at the ESRF for providing assistance in using beamline BM26A. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPRE…
Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide
2015
DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thi…
Electric conduction in solids: a pedagogical approach supported by laboratory measurements and computer modelling environments
2008
In this paper we present a pedagogic approach aimed at modeling electric conduction in semiconductors, built by using NetLogo, a programmable modeling environment for building and exploring multi‐agent systems. ‘Virtual experiments’ are implemented to confront predictions of different microscopic models with real measurements of electric properties of matter, such as resistivity. The relations between these electric properties and other physical variables, like temperature, are, then, analyzed.
Strain Sensing Coatings for Large Composite Structures Based on 2D MXene Nanoparticles
2021
Real-time strain monitoring of large composite structures such as wind turbine blades requires scalable, easily processable and lightweight sensors. In this study, a new type of strain-sensing coating based on 2D MXene nanoparticles was developed. A Ti3C2Tz MXene was prepared from Ti3AlC2 MAX phase using hydrochloric acid and lithium fluoride etching. Epoxy and glass fibre–reinforced composites were spray-coated using an MXene water solution. The morphology of the MXenes and the roughness of the substrate were characterised using optical microscopy and scanning electron microscopy. MXene coatings were first investigated under various ambient conditions. The coating experienced no sign…
Out-of-plane transport of 1T-TaS2/graphene-based van der Waals heterostructures
2021
Due to their anisotropy, layered materials are excellent candidates for studying the interplay between the in-plane and out-of-plane entanglement in strongly correlated systems. A relevant example is provided by 1T-TaS2, which exhibits a multifaceted electronic and magnetic scenario due to the existence of several charge density wave (CDW) configurations. It includes quantum hidden phases, superconductivity and exotic quantum spin liquid (QSL) states, which are highly dependent on the out-of-plane stacking of the CDW. In this system, the interlayer stacking of the CDW is crucial for the interpretation of the underlying electronic and magnetic phase diagram. Here, thin-layers of 1T-TaS2 are …
Epoxy Resin/Carbon Black Composites Below the Percolation Threshold
2013
International audience; A set of epoxy resin composites filled with 0.25-2.0 wt.% of commercially available ENSACO carbon black (CB) of high and low surface area (CBH and CBL respectively) has been produced. The results of broadband dielectric spectroscopy of manufactured CB/epoxy below the percolation threshold in broad temperature (200 K to 450 K) and frequency (20 Hz to 1 MHz) ranges are reported. The dielectric properties of composites below the percolation threshold are mostly determined by alpha relaxation in pure polymer matrix. The glass transition temperature for CB/epoxy decreases in comparison with neat epoxy resin due to the extra free volume at the polymer-filler interface. At …
Photoconductivity and photovoltaic effect in indium selenide
1983
Transport and phototransport properties of crystalline indium monoselenide (InSe) doped with a variety of elements are reported. Measured mobilities, lifetimes, and effective diffusion lengths of photoexcited carriers are used to interpret electrical and photovoltaic properties of several different structures. These include p‐n junctions, bismuth/p‐type InSe, platinum/n‐type InSe, and indium tin oxyde (ITO)/p‐type InSe. External solar efficiencies of the best devices are between 5% and 6%. The influence on the efficiency of the various parameters is evaluated, and ways of improvement are discussed.
Nanocarbons in electrospun polymeric nanomats for tissue engineering: A review
2017
Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity an…
Multifunctional coordination polymers based on copper with modified nucleobases, easily modulated in size and conductivity.
2019
This Accepted Manuscript will be available for reuse under a CC BY-NC-ND licence after 24 months of embargo period